DIELECTRICAL DIFFERENTIAL THERMAL ANALYSIS

III. Some relations in faujasite

R. Roque-Malherbe, C. de las Pozas and J. Castillo-Santana

NATIONAL CENTER FOR SCIENTIFIC RESEARCH, P.O. BOX 6690, HAVANA, CUBA

(Received February 10, 1986)

Sodium faujasites with different Si/Al ratios were studied by means of thermodielectrical method.

With the thermodielectrical analyser previously described [1], sodium faujasites with different Si/Al ratios (Table 1), and faujasites with Si/Al = 1.57 and different sodium contents (Table 2) were studied. The Si/Al ratio was determined using the empirical relation a = 0.0086 N(Al) + 24.191 between the cell parameter a and the aluminium content N(Al) in the faujasite [2]. The majority of the samples were

Sample	Si/Al	Faujasite content, %	Precedence
a	3.8	90-100	Na Y
b	1.9	60	synthetised (4)
с	1.8	60	synthetised (4)
d,	1.6	90-100	Reachim Na X
e	1.5	70	synthetised (4)

Table 1 Description of the used faujasites

Table 2 Description of the Na-NH4-faujasites

Sample	Si/Al	Na, %
1	1.57	100
2	1.57	97
3	1.57	68
4	1.57	45
5	1.57	39

Note: The samples were obtained by boiling Na-faujasite in a 3 molar solution of NH_4Cl at 380 K

John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest

322 ROQUE-MALHERBE et al.: DIELECTRIC DIFFERENTIAL THERMAL ANALYSIS

obtained by synthesis in 7.5 molal NaOH solution with a ratio of 1 part of solution for 1 part of natural mordenite (80% of mordenite in the rock and 20% of quartz, montmorillonite and volcanic glass with an elemental composition as follows: $SiO_2: 66.9\%$; $Al_2O_3: 11.5\%$; $Fe_2O_3: 2.7\%$; CaO: 4.4%; MgO: 1.8%; K₂O: 0.76%; Na₂O: 1.83%) previously fully exchanged with Na at 380 K [3, 4]. The faujasite content in the synthetic sample and the mordenite content in the natural sample were determined by adsorption of NH₃ [5], and the sodium content by atomic absorption.

Sample	Si/Al	Т. К
	3.8	275
b	1.9	320
с	1.8	330
d	1.6	375
e	1.5	400

Table 3 Dependence of ΔT with Si/Al relation

Sample	Na, %	<i>Т</i> , К
1	100.0	475
2	97.4	540

68.5

44.8

39.3

625

670

700

Table 4 Dependence of ΔT with sodium content

3

4

5

Fig. 1 Thermal curves of samples a, b, c, d, e. Relation between ΔT and Si/Al

J. Thermal Anal. 32, 1987

In Figs 1 and 2 the dielectrical curves for samples a-e and samples 1-5 are shown, while Tables 3 and 4 give the dependence between ΔT , the Si/Al ratio and the sodium content.

As found previously [6], the first thermal effect is related with the polarization of the cations and the adsorbed zeolitic water, and the second peak is a consequence of cationic conduction. In this way it is possible to understand that, as sodium has a high mobility in faujasite [7], the decrement in sodium content implies an increment in ΔT . On the other hand, the increment in ΔT with the decrement in Si/Al is in contradiction with the reported data on the conductivity in faujasites [7] and must be related with structural changes in faujasites with different Si/Al ratios. These results (Fig. 1) must be treated with care, and only as a tendency.

Fig. 2 Thermal curves of samples 1, 2, 3, 4, 5. Relation between ΔT and the sodium content in a Na-NH-faujasite

References

- 1 A. Montes, R. Roque-Malherbe and E. D. Shchukin, J. Thermal Anal., to be published.
- 2 D. W. Breck and E. M. Flaningen, Molecular Sieves, Society of Chemical Industry, London 1968, p. 47.
- 3 H. E. Robson and K. L. Riley, Molecular Sieves II. ACS Symp. Ser. 40. Washington D.C., 1977, p. 233.
- 4 C. de las Pozas and R. Roque-Malherbe, Revista Cubana de Fisica submitted for publication.
- 5 L. Lopez-Colado and R. Roque-Malherbe, Revista, Varona, 15 (1985).
- 6 R. Roque-Malherbe and A Montes, J. Thermal Anal., submitted for publication.
- 7 D. C. Freeman and D. N. Stamires, J. Chem. Phys., 35 (1961) 799.